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Medical tests are not perfectly accurate.  Sometimes a test will indicate that the patient has a 
condition when he or she doesn’t have it; this is called a “false positive”.  At other times the test 
will indicate that the patient doesn’t have that condition when he or she really has it; this is called 
a “false negative”.  When a doctor and a patient receive the results of such a medical test, what is 
the probability that the result is correct?  
 
 

Analysis 
 
The usual description of a medical test is similar to the following.  Of people tested who have the 
problem, some percent will test positive (this is called “sensitivity”).  Of people tested who don’t 
have the problem, some other percent will test negative (this is called “specificity”). 
 
How can we adapt such a description in order to answer the question above? 
 
Define variables as follows:  Y fraction of people have the problem and N fraction of people 
don’t.  Of those who have the problem, A fraction will test positive (sensitivity) and B fraction 
will test negative (false negatives).  Of those who don’t have the problem, C fraction will test 
positive (false positives) and D fraction will test negative (specificity). 
 
If  we have P people in the population, then PY of them have the problem and PN don’t.  Of the 
PY patients with the problem, PYA of them will test positive and PYB will test negative.  Of the 
PN patients who don’t have the problem, PNC of them will test positive and PND will test 
negative.  The number of positive tests and the number of negative tests are shown below. 



 
 

 
 
 
So the probability that a person who tests positive really is positive is PYA / ( PYA + PNC ) and 
the probability that a person who tests negative really is negative is PND / ( PYB + PND ). 
 
Numeric  Examples 
 
 
Example 1: 
population P = 10,000     prevalence Y = 90%     sensitivity A = 0.6460     specificity D = 0.9679 
 
 

 
 
 
The probability that a patient with a positive test really has the disease is 5814/5846 = 99% and 
the probability that a patient with a negative test really doesn’t is 968/4154 = 23%. 
 
Example 2:  as above, but change prevalence Y to 10%. 
 
 



 
 
 
The probability that a patient with a positive test really has the disease is 646/935 = 69% and the 
probability that a patient with a negative test really doesn’t have the disease is 8711/9065 = 96%. 
 
These examples show that confidence in test results depends on the prevalence of the problem, as 
well as the characteristics of the test itself. 



Variables’  Effects  on  Confidence 
 
The next two graphs show how the prevalence of the condition in the population affects the 
probability that a positive report is correct and the probability that a negative report is correct. 
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When: probability of a false positive is 10% and probability of a false negative is 10%. 
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When: probability of a false positive is 30% and probability of a false negative is 30%. 
 



Those graphs illustrate the following relationships among variables: 
1.  Greater prevalence of the problem in the population increases confidence in positive reports 
     and decreases confidence in negative reports. 
2.  Larger rates of false positives decrease confidence in positive reports and in negative reports. 
3.  Larger rates of false negatives decrease confidence in positive reports and in negative reports. 
 
The next four graphs show how the rate of false negatives (shown on X-axes) affects the 
probability that a positive report is correct and the probability that a negative report is correct. 
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All four graphs: 
X-axis: rate of false negatives 

Y-axis (blue): probability that a positive report is correct 
Y-axis (red): probability that a negative report is correct 
When: prevalence of the problem in the population and 
rate of false positives are as shown under each graph. 

 
 
Those graphs illustrate the same relationships among variables as do the first two graphs. 



Effects  of  Multiple  Tests 
 
If a physician needs more confidence about a patient’s condition than is justified by the 
characteristics of a test and its reports, other tests might be ordered.  If all tests report the same 
result, then confidence increases significantly.  If the tests report mixed results, then additional 
tests can be ordered if they exist, or the physician can order treatment for the most serious 
condition that might exist. 
 
Example 3:  Suppose a doctor suspects the presence of a disease which can be fatal if not treated.  
Also suppose there are three different tests for the existence of that disease. 
 

 
       Probability of Probability of 
  Test     false positive false negative 
     A            0.20         0.27 
     B            0.45         0.18 
     C            0.38         0.30 
 

 
If all three tests come back negative, what is the probability that the patient really has the 
disease?  (That is, what is the probability that all three reports are wrong?)  The probability of 
several independent conditions being true at the same time is the product of the probabilities of 
those conditions individually.  So the probability that this patient has this illness is 0.27 x 0.18 x 
0.30 = 0.01458 or about 1½ percent. 
 
 
 

Do  More  Tests,  or  Not? 
 
Those calculations show why physicians sometimes want more tests; they greatly increase 
confidence in the results.  Extra tests cost extra money, so medical insurance companies want to 
avoid more tests.  Sometimes insurance reimbursement decisions are based on financial ideas 
like these: 
 

Might the extra cost of an additional test lead to the choice of a less 
expensive treatment?  Might the test save us more than it might cost us?  
Then we want to pay for that test; otherwise we don’t. 

 
Regardless of the possible costs involved, those financial ideas sometimes must yield to medical 
considerations like the following (although usually much less extreme in the consequences): 
 

A doctor believes a patient has either Disease-A or Disease-B, with no 
other alternatives, but is not sure which disease is present.  The accepted 
treatment for Disease-A will kill the patient if he or she has Disease-B.  
The accepted treatment for Disease-B will kill the patient if he or she has 
Disease-A.  Do as many tests as necessary to determine which disease 
exists. 

 
 


